## STI Policy of India: Instruments for Supporting International Cooperation in Higher Education, Research and Innovation





Embassy of India, Moscow

#### Rama Swami Bansal, Counsellor (S&T)

Workshop Session on "Instruments of State Policy Supporting Cross –border Cooperation in Research, Education and Innovation – Country Examples" Mechanisms of Commercialization of Scientific Research:

9th April 2015, HSE, Moscow

## Science, Technology and Innovation System of India



### **Central S&T Departments and Ministries**



## **Present STI Infrastructure**

#### **HIGHER EDUCATION SECTOR**

712 Universities068 Institutes of National Importance36671 Colleges

#### **CENTRAL GOVERNMENT**

611 Research Institutions / Laboratories 144 Public sector industries

#### **STATE GOVERNMENT**

917 Agriculture Universities/Research Stations/Departments 049 Public sector industries

#### **PRIVATE SECTOR**

1035 In-house R&D Units489 Scientific & Industrial Research Organisations (SIRO)591 Industry from D/B of Central Monitoring of Indian Economy & Multi Nationals

## Some Steps to Boost Education and STI

- Attracting talent to Science (10-32 yrs) through Initiative on Innovation in Science Pursuit for Inspired Research (INSPIRE) to build critical HR to strengthen and expand STI base
- Expanding educational infrastructure at all levels to increase Gross Enrollment Ratio including setting up of new institutions of excellence (8 new IITs, 5 IISERs, 14 new national universities....
- **TDB** technology support system in private sector
- A National Entrepreneurship Board to support S&T entrepreneurship and technology business incubation parks
- **National Innovation Council; 2010-20 : Decade of Innovation**
- Science, Technology & Innovation Policy (2013): accelerate the pace of discovery and delivery of science led solutions for faster, sustainable and inclusive growth

## **STI Policy - What do we want to achieve and how?**

#### Aspirations

- Placing India among the world's top five global scientific powers by 2020
- Increasing R&D expenditure from current ~ 1% of GDP to 2% by 2020.
- Increasing number of Full Time Equivalent of R&D personnel by min. 66% of the present strength in 5 yrs.
- Increasing accessibility, availability, affordability of innovations, especially for women, differently-abled and disadvantaged sections of society.

#### **Mechanisms**

- Boosting R&D through private sector investments
- Gearing Public private participation models for addressing social problems
- Aligning venture capital
- closing gaps in translation of new findings at the grassroots and the commercial space.

 Promoting International (Bilateral & Multilateral) STI cooperation

## **Guiding Principles in STI**

- **4** Science with a human face that serves common man
- Creating ecosystem for basic research for tech development & innovation; and for international / inter-disciplinary collaborative research and establishing IPR regime that maximizes incentive for generation and protection of innovation
- Leveraging S&T to bridge disparities between urban and rural divide with focus on technologies for rural development & employment
- Encouraging research and innovation through interaction between private and public institutions in areas of societal and economic relevance
- Harnessing, attracting and providing opportunities to the best brains for undertaking scientific research and innovation as career choice
- Establishing Institutes for Rural Technology Development, Himalayan Technology and Institute for Big data analytics for predictive science
- According priority to Agriculture, Water Management, Health, Education, Energy, Communication and Transportation Technologies
- Promoting research and applications of ICT, BT, Material Sciences in Manufacturing and of Nuclear Science in Medicine, Industry and Agriculture
- Building centers of research excellence in fields of Nanotechnology, Material Sciences, Thorium Technology and Brain Research

## **State Policy on Cross-Border Cooperation**

- Engaging in value based international partnerships & collaborations to be globally competitive and relevant
- Establishing strategic partnerships and alliances with other nations for value addition to national programs and missions
- Incentivizing domestic & foreign private sector investments in high end R&D to foster innovation and techno-entrepreneurship

## **International Partnerships & Alliances for STI**

Mandate: Identification, facilitation and promotion of India's international cooperation in frontier and emerging areas of STI under bilateral and multilateral programs

#### **Guiding Principles**

#### Technology Synergy

 Parity based international relations based on mutuality, cofunding, complementarity and reciprocity

#### **Technology Development**

 Industrial & applied R&D through academia-industry connect in fostering innovation and techno-entrepreneurship

#### Technology Support

 Investing into promoting S&T base and capacity building for developing countries

## **Coordination of International Cooperation**



## International S&T Engagements through DST



## **Modalities of International Cooperation**

#### **Supporting Contact Building through**

- Joint Workshops/ Seminars/Frontiers Symposia/Exhibitions
- Visitation, Fellowships & Internships
- Exploratory visits
- Lectures by Eminent Scientists
- Fielding young researchers scholars to international meets with Peers

#### **Supporting for**

- > Joint R&D Projects of mutual interest
- Project mode mobility based exchanges
- Training and Advanced Schools
- Access to Advanced Facilities
- Participation in Mega-science projects

#### **Facilitating and Promoting**

- Joint R&D Clusters
- Virtual Networked Centres
- Multi institutional R&D projects
- Catalyzing creation of Joint Ventures

## **Modalities of International Cooperation**

#### **Promoting pre-commercial R&D and Innovation**

- > Academia Industry Projects for Applied R&D
- > PPP for Industrial R&D and Entrepreneurship through

GITA platform: Canada, Israel, Finland, Spain, S. Korea & UK

- Facilitate Technology Development & Technology Transfer
- Indo-US Endowment Fund for Innovation
- Annual Technology Summit with partner country

#### **Exclusive Bi-national S&T Bodies**

- Indo-French Centre for Promotion of Advanced Research
- Indo-US Science & Technology Forum
- Indo-German Science & Technology Centre (Industrial & Applied R&D)
- Indo-Russian Scientific & Technological Centre (Technology Transfer)

## Global Innovation & Technology Alliance (GITA)

- Section 25 Company between TDB & CII to provide demanddriven technology solutions through Institutional & Global alliances on competitive basis.
- A platform for forging frontline Global technological alliances for Indian companies for achieving R&D leadership in global & domestic markets (Israel, Canada, Finland, S. Korea, Spain & UK).
- An Innovative PPP mechanism for attracting Indian industry's investment in technology by
  - Mapping technology gaps;
  - Evaluating global technology offers from techno-economic perspective;
  - Connecting amongst technology developers, providers, commercializes;
  - Funding last phase of technology development that connects the market; and
  - Demonstrating technology solutions.

## **The GITA Innovation Ecosystem**



## **Instruments for Cooperation in Higher Education**

- Educational Exchange Programmes of MHRD (41 countries), individual universities and HEIs
- Global Initiative of Academic Networks (GIAN) for engaging international scientists and entrepreneurs with HEIs through MHRD schemes
- Advanced Research fellowships of Indian government departments and agencies
- Joint Support Programmes from school level to higher education level
  - Max Plank Partnership Group
  - Lindau's programme
- **4** Advanced training fellowships by foreign agencies

## Capacity Building in R&D: 2012-17

Building critical research mass in select areas

• Computer & Mathematical Sciences, Earth & Environmental Sciences, Glaciology, Clinical Medicine, Cognitive Sciences, etc.

Expanding Human capacity base in R&D & Gender Parity

• Overseas doctoral & post doctoral fellowships & Re-entry schemes for expats & foreign researchers;

**Strengthening University Research** 

• Special schemes like FIST, CURIE, Promotion of University Research and Scientific Excellence (PURSE), etc.

**Competitive grants for decadal institutional R&D programs in areas** 

• Climate change, new energy and sustainability science- IRPHA

**National Action Plan for Climate Change Research** 

- Sustaining Himalayan Eco System
- Enhancing Strategic Knowledge base on Climate Change

Participation in Global Mega-Science R&D Projects

- Off shore (CERN, FAIR, DESY, TMT, SKA, KEK, ELECTRA, ISIS)
- In-country Experiments (INDIGO, INO, NLST)

## Capacity Building in R&D: 2012-17

**Stepping up Nano Mission** 

• With focus on applications, technology development, nano-lithography, nano-toxicology

**Establishment of Centers for Advanced Research** 

• Water Technologies, Advanced Manufacturing, Robotics, Sensors & Integrated Systems, Geospatial Technologies, Super computing

Investments into solution science through PPP model

• In Solar Energy, Water, Health, Security Technologies etc.

**Developing Technology Platforms through PPP model** 

• Membrane Technologies for Sensors, Computational Materials Engineering, Next-Generation Wireless Systems, distributed off grid power systems, etc.

National and Bi-national R&D centers

• Clean Energy, Automotive Research, Biomedical Devices & Diagnostic Technologies etc.

# Thank

you

## Some Highlights of Indian S&T Scenario

- Public investments into Indian science sector have maintained a near 20-22% growth annually from 2005-2012
- Relative position of India in scientific publications and patents improved considerably since 2005 (from 13th to 7th and 16th to 11th)
- Average annual growth of publication has been 14% with 3.8% of world share and average citation impact of 0.68
- **4** 81% increase in no. of publications in top 1% impact making journals in world
- Engg Science publications grown by 89% with citation impact of 1.0 highest density & high impact with global share of 4.2 %
- **4** Of the total 66,557 publications in 2013, 42.88% with foreign authors
- **4** Publication share of University increased from 15 to 39% since 2006
- 4 New institutions established for expanding R&D base with FTEs in R&D estimated as 170,000
- **4** Pvt sector investment in R&D increased from 24% to 33% of net investments